Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.508
Filtrar
1.
J Ethnopharmacol ; 328: 118139, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38561058

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cortex fraxini (also known as Qinpi), the bark of Fraxinus rhynchophylla Hance and Fraxinus stylosa Lingelsh, constitutes a crucial component in several traditional Chinese formulas (e.g., Baitouweng Tang, Jinxiao Formula, etc.) and has demonstrated efficacy in alleviating intestinal carbuncle and managing diarrhea. Cortex fraxini has demonstrated commendable anticancer activity in the realm of Chinese ethnopharmacology; nevertheless, the underlying mechanisms against colorectal cancer (CRC) remain elusive. AIM OF THE STUDY: Esculin, an essential bioactive compound derived from cortex fraxini, has recently garnered attention for its ability to impede viability and induce apoptosis in cancer cells. This investigation aims to assess the therapeutic potential of esculin in treating CRC and elucidate the underlying mechanisms. MATERIALS AND METHODS: The impact of esculin on CRC cell viability was assessed using CCK-8 assay, Annexin V/PI staining, and Western blotting. Various cell death inhibitors, along with DCFH-DA, ELISA, biochemical analysis, and Western blotting, were employed to delineate the modes through which esculin induces HCT116 cells death. Inhibitors and siRNA knockdown were utilized to analyze the signaling pathways influenced by esculin. Additionally, an azomethane/dextran sulfate sodium (AOM/DSS)-induced in vivo CRC mouse model was employed to validate esculin's potential in inhibiting tumorigenesis and to elucidate its underlying mechanisms. RESULTS: Esculin significantly suppressed the viability of various CRC cell lines, particularly HCT116 cells. Investigation with diverse cell death inhibitors revealed that esculin-induced cell death was associated with both apoptosis and ferroptosis. Furthermore, esculin treatment triggered cellular lipid peroxidation, as evidenced by elevated levels of malondialdehyde (MDA) and decreased levels of glutathione (GSH), indicative of its propensity to induce ferroptosis in HCT116 cells. Enhanced protein levels of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) and p-eIF2α suggested that esculin induced cellular endoplasmic reticulum (ER) stress, subsequently activating the Nrf2/ARE signaling pathway and initiating the transcriptional expression of heme oxygenase (HO)-1. Esculin-induced excessive expression of HO-1 could potentially lead to iron overload in HCT116 cells. Knockdown of Ho-1 significantly attenuated esculin-induced ferroptosis, underscoring HO-1 as a critical mediator of esculin-induced ferroptosis in HCT116 cells. Furthermore, utilizing an AOM/DSS-induced colorectal cancer mouse model, we validated that esculin potentially inhibits the onset and progression of colon cancer by inducing apoptosis and ferroptosis in vivo. CONCLUSIONS: These findings provide comprehensive insights into the dual induction of apoptosis and ferroptosis in HCT116 cells by esculin. The activation of the PERK signaling pathway, along with modulation of downstream eIF2α/CHOP and Nrf2/HO-1 cascades, underscores the mechanistic basis supporting the clinical application of esculin on CRC treatment.


Asunto(s)
Neoplasias del Colon , Ferroptosis , Humanos , Animales , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Esculina , Apoptosis , Células HCT116 , Estrés del Retículo Endoplásmico
2.
J Med Chem ; 67(8): 6292-6312, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38624086

RESUMEN

Mitochondria are important drug targets for anticancer and other disease therapies. Certain human mitochondrial DNA sequences capable of forming G-quadruplex structures (G4s) are emerging drug targets of small molecules. Despite some mitochondria-selective ligands being reported for drug delivery against cancers, the ligand design is mostly limited to the triphenylphosphonium scaffold. The ligand designed with lipophilic small-sized scaffolds bearing multipositive charges targeting the unique feature of high mitochondrial membrane potential (MMP) is lacking and most mitochondria-selective ligands are not G4-targeting. Herein, we report a new small-sized dicationic lipophilic ligand to target MMP and mitochondrial DNA G4s to enhance drug delivery for anticancer. The ligand showed marked alteration of mitochondrial gene expression and substantial induction of ROS production, mitochondrial dysfunction, DNA damage, cellular senescence, and apoptosis. The ligand also exhibited high anticancer activity against HCT116 cancer cells (IC50, 3.4 µM) and high antitumor efficacy in the HCT116 tumor xenograft mouse model (∼70% tumor weight reduction).


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , G-Cuádruplex , Mitocondrias , Humanos , G-Cuádruplex/efectos de los fármacos , Ligandos , Animales , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Ratones , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Apoptosis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ratones Desnudos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Ensayos Antitumor por Modelo de Xenoinjerto , Células HCT116 , ADN Mitocondrial/metabolismo
3.
Genome Biol ; 25(1): 105, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649976

RESUMEN

BACKGROUND: The proliferation antigen Ki-67 has been widely used in clinical settings for cancer staging for many years, but investigations on its biological functions have lagged. Recently, Ki-67 has been shown to regulate both the composition of the chromosome periphery and chromosome behaviour in mitosis as well as to play a role in heterochromatin organisation and gene transcription. However, how the different roles for Ki-67 across the cell cycle are regulated and coordinated remain poorly understood. The progress towards understanding Ki-67 function have been limited by the tools available to deplete the protein, coupled to its abundance and fluctuation during the cell cycle. RESULTS: Here, we use a doxycycline-inducible E3 ligase together with an auxin-inducible degron tag to achieve a rapid, acute and homogeneous degradation of Ki-67 in HCT116 cells. This system, coupled with APEX2 proteomics and phospho-proteomics approaches, allows us to show that Ki-67 plays a role during DNA replication. In its absence, DNA replication is severely delayed, the replication machinery is unloaded, causing DNA damage that is not sensed by the canonical pathways and dependent on HUWE1 ligase. This leads to defects in replication and sister chromatids cohesion, but it also triggers an interferon response mediated by the cGAS/STING pathway in all the cell lines tested. CONCLUSIONS: We unveil a new function of Ki-67 in DNA replication and genome maintenance that is independent of its previously known role in mitosis and gene regulation.


Asunto(s)
Replicación del ADN , Inestabilidad Genómica , Antígeno Ki-67 , Humanos , Antígeno Ki-67/metabolismo , Células HCT116 , Daño del ADN , Ubiquitina-Proteína Ligasas/metabolismo
4.
Aging (Albany NY) ; 16(7): 5866-5886, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38613793

RESUMEN

NXPH4 promotes cancer proliferation and invasion. However, its specific role and mechanism in cancer remain unclear. Transcriptome and clinical data for pan-cancer were derived from the TCGA database. K-M survival curve and univariate Cox were used for prognostic analysis. CIBERSORT and TIMER algorithms were employed to calculate immune cell infiltration. Gene set enrichment analysis (GSEA) was employed for investigating the function of NXPH4. Western blot verified differential expression of NXPH4 in colon cancer. Functional assays (CCK-8, plate clonogenicity assay, wound healing assay, and Transwell assay) confirmed the impact of NXPH4 on proliferation, invasion, and migration of colon cancer cells. Dysregulation of NXPH4 in pan-cancer suggests its potential as a diagnostic and prognostic marker for certain cancers, including colon and liver cancer. High expression of NXPH4 in pan-cancer might be associated with the increase in copy number and hypomethylation. NXPH4 expression in pan-cancer is substantially linked to immune cell infiltration in the immune microenvironment. NXPH4 expression is associated with the susceptibility to immunotherapy and chemotherapy. Western blot further confirmed the higher expression of NXPH4 in colon cancer. Knockdown of NXPH4 significantly suppresses proliferation, invasion, and migration of colon cancer cell lines HT-29 and HCT116, as validated by functional assays.


Asunto(s)
Biomarcadores de Tumor , Movimiento Celular , Proliferación Celular , Neoplasias del Colon , Humanos , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Proliferación Celular/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Progresión de la Enfermedad , Células HT29 , Células HCT116 , Pronóstico , Invasividad Neoplásica , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Línea Celular Tumoral , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
5.
Crit Rev Immunol ; 44(4): 13-21, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505918

RESUMEN

Colorectal cancer is the third most common malignant tumor, with highly invasive and metastatic potential in the later stage. This study investigated the role of PKN2 overexpression and M2-polarized macrophages in dictating the malignant phenotype of colorectal cancer cells. HCT116 colorectal cancer cell line with PKN2 overexpression was generated to investigate the functional role of PKN2. THP-1 cells were polarized into M2-like macrophages, and the co-culture system of THP-1/M2 cells and HCT116 cells was established to examine the impacts of M2-polairzed macrophages on the malignant phenotype of colorectal cancer cells. PKN2 overexpression promoted cell proliferation, migration and invasion in HCT116 colorectal cancer cells, and reduced spontaneous cell death in the cell culture. Besides, the presence of M2-polarized THP-1 cells significantly enhanced the aggressive phenotype of HCT116 cells. Both PKN2 overexpression and M2-polarized THP-1 cells increased the expression of NF-κB p65 in HCT116 cells, indicating that enhanced NF-κB signaling may contribute to the augmented aggressiveness of HCT116 cells. These findings suggest PKN2 as an oncogenic factor in colorectal cancer and that M2-polarized THP-1 cells may promote the progression of colorectal cancer by activating NF-κB signaling.


Asunto(s)
Neoplasias Colorrectales , FN-kappa B , Humanos , Células HCT116 , Línea Celular Tumoral , FN-kappa B/metabolismo , Macrófagos , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Movimiento Celular
6.
Cancer Med ; 13(7): e7117, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38545812

RESUMEN

BACKGROUND: In recent years,the lack of specific markers for the diagnosis of colorectal cancer has led to an upward trend in both morbidity and mortality from this condition. There is an urgent need to identify molecular biomarkers that contribute to early cancer detection. This study aimed to identify specific exosomal microRNAs that hold potential as diagnostic biomarkers for CRC. METHODS: We screened for differentially expressed miRNAs using the CRC exosome dataset GSE39833. To validate the results in the public database, we collected serum from 168 CRC patients and 168 healthy volunteers. The expression levels of exosomal miR-1470 in healthy volunteers and CRC patients were analyzed using qRT-PCR. To evaluate the diagnostic potential of the selected miR-1470 in distinguishing CRC patients from healthy controls, we analyzed its receiver operating characteristic curve. To explore the biological functions of miR-1470 in CRC cell lines, we detected the miR-1470's ability to regulate the growth and metastasis of CRC cells by CCK8, transwell and other assays after transfection of miR-1470 in SW480, HCT-116 cells. RESULTS: Exosomal miR-1470 exhibited significant up-regulation in CRC patients compared to healthy volunteers. The ROC curve analysis revealed an area under the curve (AUC) of 0.74 (95% confidence interval: 0.6876-0.7920) for exosomal miR-1470, indicating its potential as a diagnostic biomarker. Furthermore, the expression level of miR-1470 in CRC patients showed correlations with age, metastasis, and HDL content. We overexpressed miR-1470 in CRC cell lines. CCK8 proliferation assay showed that miR-1470 promoted the proliferation ability of SW480 and HCT-116 cells. Transwell assay showed that miR-1470 promoted the migration and invasion ability of SW480 and HCT-116 cells. CONCLUSION: This suggested that non-invasive diagnosis of CRC is possible by detecting the level of miR-1470 in exosomes, which has important implications for early detection and treatment of this disease.


Asunto(s)
Neoplasias Colorrectales , Exosomas , MicroARNs , Humanos , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , MicroARNs/metabolismo , Células HCT116 , Proliferación Celular , Exosomas/metabolismo
7.
Iran Biomed J ; 28(1): 46-52, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38445441

RESUMEN

Background: The potential anticancer effect of melittin has motivated scientists to find its exact molecular mechanism of action. There are few data on the effect of melittin on the UPR and autophagy as two critical pathways involved in tumorigenesis of colorectal and drug resistance. This study aimed to investigate the effect of melittin on these pathways in the colorectal cancer (CRC) HCT116 cells. Methods: MTT method was carried out to assess the cytotoxicity of melittin on the HCT116 cell line for 24, 48, and 72 h. After selecting the optimal concentrations and treatment times, the gene expression of autophagy flux markers (LC3-ßII and P62) and UPR markers (CHOP and XBP-1s) were determined using qRT-PCR. The protein level of autophagy initiation marker (Beclin1) was also determined by Western blotting. Results: MTT assay showed a cytotoxic effect of melittin on the HCT116 cells. The increase in LC3-ßII and decrease in P62 mRNA expression levels, along with the elevation in the Beclin1 protein level, indicated the stimulatory role of melittin on the autophagy. Melittin also significantly enhanced the CHOP and XBP-1s expressions at mRNA level, suggesting the positive role of the melittin on the UPR activation. Conclusion: This study shows that UPR and autophagy can potentially be considered as two key signaling pathways in tumorigenesis, which can be targeted by the BV melittin in the HCT116 cells. Further in vivo evaluations are recommended to verify the obtained results.


Asunto(s)
Neoplasias Colorrectales , Meliteno , Humanos , Células HCT116 , Meliteno/farmacología , Meliteno/genética , Meliteno/metabolismo , Beclina-1/genética , Beclina-1/metabolismo , Respuesta de Proteína Desplegada , Autofagia , ARN Mensajero/metabolismo , Carcinogénesis , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética
8.
Mar Biotechnol (NY) ; 26(2): 324-337, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430291

RESUMEN

Seaweed from the genus Ulva (Ulvales, Chlorophyta) has a worldwide distribution and represents a potential biomass source for biotechnological applications. In the present study, we investigated the ulvan polysaccharide-rich fraction (UPRF) isolated from two Ulva species (U. rigida and U. pseudorotundata), naturally occurring on the Spanish Mediterranean coast. Chemical characterization of UPRFs was performed in order to explore the polysaccharides' composition. Biological assessments of UPRFs were compared by antioxidant activity and in vitro toxicity tests in the human cell lines: HCT-116 (colon cancer), G-361 (malignant melanoma), U-937 (leukemia), and HaCaT cells (immortalized keratinocytes). Chemical analysis revealed that both UPRFs presented rhamnose as the major relative sugar constituent, followed by glucose in U. rigida and xylose in U. pseudorotundata. Both also presented glucuronic acid, galactose, ribose, and mannose as the remaining monosaccharides. Similar antioxidant activity was obtained, where we observed increased activity in response to increased polysaccharide concentrations. Both UPRFs presented moderate toxicity against HCT-116 cell lines and a selectivity index ≥ 3, suggesting a good potential for use in pharmaceutical products.


Asunto(s)
Antioxidantes , 60578 , Polisacáridos , Ulva , Ulva/química , Humanos , Polisacáridos/farmacología , Polisacáridos/química , Antioxidantes/farmacología , Antioxidantes/química , Células HCT116 , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular , España
9.
Int J Biol Macromol ; 262(Pt 2): 129981, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336316

RESUMEN

The interchange of DNA sequences between genes may occur because of chromosomal rearrangements leading to the formation of chimeric genes. These chimeric genes have been linked to various cancers, accumulated significant interest in recent times. We used paired-end RNA-seq. data of four CRC and one normal sample generated from our previous study. The STAR-Fusion pipeline was utilized to identify the fusion genes unique to CRC. The in-silico identified fusion gene(s) were explored for their diagnostic, prognostic and therapeutic biomarker potential using TCGA-datasets, then validated through PCR and DNA sequencing. Further, cell line-based studies were performed to gain functional insights of the novel fusion transcript CTNND1-RAB6A, which was amplified in one sample. Sequencing revealed that there was a total loss of the CTNND1 gene, whereas RAB6A retained its coding sequence. Further, RAB6A was functionally characterized for its oncogenic potential in HCT116 cell line. RAB6A under-expression was found to be significantly associated with increased cell migration and is proposed to be regulated via the RAB6A-ECR1-Liprin-α axis. We conclude that RAB6A gene may play significant role in CRC oncogenesis, and could be used as a potential biomarker and therapeutic target in future for better management of a subset of CRCs harbouring this fusion.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias del Colon/genética , Células HCT116 , Movimiento Celular/genética , Biomarcadores
10.
Int J Cancer ; 154(11): 1987-1998, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38319157

RESUMEN

Approximately 5% of colorectal cancers (CRCs) have a gain-of-function mutation in the GNAS gene, which leads to the activation of cAMP-dependent signaling pathways and associates with poor prognosis. We investigated the effect of an activating GNAS mutation in CRC cell lines on gene expression and cell proliferation in vitro, and tumor growth in vivo. GNAS-mutated (GNASmt) HCT116 cells showed stimulated synthesis of cAMP as compared to parental (Par) cells. The most upregulated gene in the GNASmt cells was cAMP-hydrolyzing phosphodiesterase 4D (PDE4D) as detected by RNA sequencing. To further validate our finding, we analyzed PDE4D expression in a set of human CRC tumors (n = 35) and demonstrated overexpression in GNAS mutant CRC tumors as compared to GNAS wild-type tumors. The GNASmt HCT116 cells proliferated more slowly than the Par cells. PDE4 inhibitor Ro 20-1724 and PDE4D subtype selective inhibitor GEBR-7b further suppressed the proliferation of GNASmt cells without an effect on Par cells. The growth inhibitory effect of these inhibitors was also seen in the intrinsically GNAS-mutated SK-CO-1 CRC cell line having high levels of cAMP synthesis and PDE4D expression. In vivo, GNASmt HCT116 cells formed smaller tumors than the Par cells in nude mice. In conclusion, our findings demonstrate that GNAS mutation results in the growth suppression of CRC cells. Moreover, the GNAS mutation-induced overexpression of PDE4D provides a potential avenue to impede the proliferation of CRC cells through the use of PDE4 inhibitors.


Asunto(s)
Cromograninas , Neoplasias Colorrectales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Subunidades alfa de la Proteína de Unión al GTP Gs , Animales , Humanos , Ratones , Cromograninas/genética , Cromograninas/metabolismo , Neoplasias Colorrectales/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Células HCT116 , Ratones Desnudos , Mutación , Inhibidores de Fosfodiesterasa 4/farmacología
11.
Int J Biol Macromol ; 263(Pt 2): 130320, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412933

RESUMEN

Angelica gigas (A. gigas) is traditional medicinal herb that mainly exists in Korea and northeastern China. There have been relatively few studies conducted thus far on its polysaccharides and their bioactivities. We purified and described a novel water-soluble polysaccharide derived from A. gigas and investigated its immunoenhancing properties. The basic components of crude and purified polysaccharides (F1 and F2) were total sugar (41.07% - 70.55%), protein (1.12-10.33%), sulfate (2.9-5.5%), and uronic acids (0.5-31.05%) in total content. Our results demonstrated that the crude and fractions' molecular weights (Mw) varied from 42.2 to 285.2 × 103 g/mol. As the most effective polysaccharide, F2 significantly stimulated RAW264.7 cells to release nitric oxide (NO) and express several cytokines. Furthermore, F2 increased the expression of tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-É£), natural killer cytotoxicity receptors (NKp44), and granzyme-B in NK-92 cells and enhanced the cytotoxicity against HCT-116 cells. In our experiments, we found that F2 stimulated RAW264.7 cells and NK-92 cells via MAPK and NF-κB pathways. The monosaccharide and methylation analysis of the high immunostimulant F2 polysaccharide findings revealed that the polysaccharide was primarily composed of 1 â†’ 4, 1 â†’ 6, 1 â†’ 3, 6, 1 â†’ 3 and 1 â†’ 3, 4, 6 galactopyranose residues, 1 â†’ 3 arabinofuranose residues, 1 â†’ 4 glucopyranose residues. These results demonstrated that the F2 polysaccharide of A. gigas which possesses potential immunostimulatory attributes, could be used to create a novel functional food.


Asunto(s)
Angelica , FN-kappa B , Animales , Ratones , Humanos , FN-kappa B/metabolismo , Células HCT116 , Activación de Macrófagos , Células RAW 264.7 , Transducción de Señal , Células Asesinas Naturales/metabolismo , Polisacáridos/química
12.
Commun Biol ; 7(1): 154, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321111

RESUMEN

Mapping the cellular refractive index (RI) is a central task for research involving the composition of microorganisms and the development of models providing automated medical screenings with accuracy beyond 95%. These models require significantly enhancing the state-of-the-art RI mapping capabilities to provide large amounts of accurate RI data at high throughput. Here, we present a machine-learning-based technique that obtains a biological specimen's real-time RI and thickness maps from a single image acquired with a conventional color camera. This technology leverages a suitably engineered nanostructured membrane that stretches a biological analyte over its surface and absorbs transmitted light, generating complex reflection spectra from each sample point. The technique does not need pre-existing sample knowledge. It achieves 10-4 RI sensitivity and sub-nanometer thickness resolution on diffraction-limited spatial areas. We illustrate practical application by performing sub-cellular segmentation of HCT-116 colorectal cancer cells, obtaining complete three-dimensional reconstruction of the cellular regions with a characteristic length of 30 µm. These results can facilitate the development of real-time label-free technologies for biomedical studies on microscopic multicellular dynamics.


Asunto(s)
Refractometría , Humanos , Células HCT116
13.
Anticancer Res ; 44(3): 929-933, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423628

RESUMEN

BACKGROUND/AIM: Rapamycin and recombinant methioninase (rMETase) have both shown efficacy to target cancer cells. Rapamycin prevents cancer-cell growth by inhibition of the mTOR protein kinase. rMETase, by degrading methionine, targets the methionine addiction of cancer and has been shown to improve the efficacy of chemotherapy drugs. In the present study, we aimed to determine if a synergy exists between rapamycin and rMETase when used in combination against a colorectal-carcinoma cell line, compared to normal fibroblasts, in vitro. MATERIALS AND METHODS: The half-maximal inhibitory concentrations (IC50) of rapamycin alone and rMETase alone against the HCT-116 human colorectal-cancer cell line and Hs-27 human fibroblasts were determined using the CCK-8 Cell Viability Assay. After calculating the IC50 of each drug, we determined the efficacy of rapamycin and rMETase combined on both HCT-116 and Hs-27. RESULTS: Hs-27 normal fibroblasts were more sensitive to rapamycin than HCT-116 colon-cancer cells (IC50=0.37 nM and IC50=1.38 nM, respectively). HCT-116 cells were more sensitive to rMETase than Hs-27 cells (IC50 0.39 U/ml and IC50 0.96 U/ml, respectively). The treatment of Hs-27 cells with the combination of rapamycin (IC50=0.37 nM) and rMETase (IC50=0.96 U/ml) showed no significant difference in their effect on Hs-27 cell viability compared to the two drugs being used separately. However, the treatment of HCT-116 cells with the combination of rapamycin (IC50=1.38 nM) and rMETase (IC50=0.39 U/ml) was able to decrease cancer-cell viability significantly more than either single-drug treatment. CONCLUSION: Rapamycin and rMETase, when used in combination against colorectal-cancer cells, but not normal fibroblasts, in vitro, have a cancer-specific synergistic effect, suggesting that the combination of these drugs can be used as an effective, targeted cancer therapy.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Sirolimus/farmacología , Liasas de Carbono-Azufre , Neoplasias del Colon/tratamiento farmacológico , Metionina , Células HCT116 , Proteínas Recombinantes
14.
Bioorg Chem ; 145: 107178, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38359708

RESUMEN

A series of designed stilbenoid-flavanone hybrids featuring sp3-hybridized C2 and C3 atoms of C-ring was evaluated against colorectal cancers presented compounds 4, 17, and 20 as the most potential compounds among explored compounds. Evaluation of the anticancer activity spectrum of compounds 4, 17, and 20 against diverse solid tumors presented compounds 17 and 20 with interesting anticancer spectrum. The potencies of compounds 17 and 20 were assessed in comparison with FDA-approved anticancer drugs. Compound 17 was the, in general, the most potent showing low micromolar GI50 values that were more potent than the standard FDA-approved drugs against several solid tumors including colon, brain, skin, renal, prostate and breast tumors. Compound 17 was subjected for evaluation against normal cell lines and was subjected to a mechanism study in HCT116 colon cancer cells which presented it as an inhibitor of Wnt signaling pathway triggering G2/M cell cycle arrest though activation of p53-p21 pathway as well as intrinsic and extrinsic apoptotic death of colon cancer cells. Compound 17 might be a candidate for further development against diverse solid tumors including colon cancer.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Flavanonas , Yohexol/análogos & derivados , Estilbenos , Masculino , Humanos , Vía de Señalización Wnt , Estilbenos/farmacología , Antineoplásicos/farmacología , Células HCT116 , Flavanonas/farmacología , Apoptosis , Neoplasias del Colon/tratamiento farmacológico , Proliferación Celular , Línea Celular Tumoral , beta Catenina/metabolismo
15.
Clin Transl Gastroenterol ; 15(3): e00682, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38235705

RESUMEN

INTRODUCTION: The aim of this study was to investigate the epigenetic regulation and underlying mechanism of NRIP3 in colorectal cancer (CRC). METHODS: Eight cell lines (SW480, SW620, DKO, LOVO, HT29, HCT116, DLD1, and RKO), 187 resected margin samples from colorectal cancer tissue, 146 cases with colorectal adenomatous polyps, and 308 colorectal cancer samples were used. Methylation-specific PCR, Western blotting, RNA interference assay, and a xenograft mouse model were used. RESULTS: NRIP3 exhibited methylation in 2.7% (5/187) of resected margin samples from colorectal cancer tissue, 32.2% (47/146) of colorectal adenomatous polyps, and 50.6% (156/308) of CRC samples, and the expression of NRIP3 was regulated by promoter region methylation. The methylation of NRIP3 was found to be significantly associated with late onset (at age 50 years or older), poor tumor differentiation, lymph node metastasis, and poor 5-year overall survival in CRC (all P < 0.05). In addition, NRIP3 methylation was an independent poor prognostic marker ( P < 0.05). NRIP3 inhibited cell proliferation, colony formation, invasion, and migration, while induced G1/S arrest. NRIP3 suppressed CRC growth by inhibiting PI3K-AKT signaling both in vitro and in vivo . Methylation of NRIP3 sensitized CRC cells to combined PI3K and ATR/ATM inhibitors. DISCUSSION: NRIP3 was frequently methylated in both colorectal adenomatous polyps and CRC. The methylation of NRIP3 may potentially serve as an early detection, late-onset, and poor prognostic marker in CRC. NRIP3 is a potential tumor suppressor. NRIP3 methylation is a potential synthetic lethal marker for combined PI3K and ATR/ATM inhibitors.


Asunto(s)
Pólipos Adenomatosos , Neoplasias Colorrectales , Humanos , Animales , Ratones , Persona de Mediana Edad , Metilación de ADN , Epigénesis Genética , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Células HCT116 , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Pólipos Adenomatosos/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
16.
Cell Biochem Biophys ; 82(1): 153-173, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38198024

RESUMEN

Colorectal cancer (CRC) is the most common cancer in both men and women and is associated with increased telomerase levels and activity. The potential downstream effects of TERT and/or TERC downregulation by berberine (a telomerase inhibitor) or RNA interference (RNAi) on various target RNAs, proteins, relative telomerase activity (RTA), relative telomere length (RTL), hydrogen peroxide concentration [H2O2], percentage of cell cycle distribution, cell size and granularity as well as cellular metabolites were explored in HCT 116 cell line. Knockdown of TERT decreased TERC. The downregulation of TERT and/or TERC caused increment of [H2O2], G0/G1 phase arrest in addition to decreased S and G2/M phases, as well as diminished cell size. RTL was later reduced as a result of TERT, TERT and/or TERC downregulation which decreased RTA. It was discovered that xanthine oxidase (XO) was significantly and positively correlated at FDR-adjusted p value < 0.05 with RTA, TERT, TERT, TERC, and RTL. HCT 116 with decreased RTA was closely clustered in the Principal Component Analysis (PCA) indicating similarity of the metabolic profile. A total of 55 metabolites were putatively annotated in this study, potentially associated with RTA levels. The Debiased Sparse Partial Correlation (DSPC) Network revealed that RTA was directly correlated to TERT. There were 4 metabolic pathways significantly affected by low level of RTA which include (1) purine metabolism, (2) glycine, serine, and threonine metabolism, (3) glyoxylate and dicarboxylate metabolism, and (4) aminoacyl-tRNA biosynthesis. The Gene-Metabolite Interaction Network implied that reduced RTA level was related to the mechanism of oxidative stress. This study reveals the linkages between RTA to various selected RNAs, proteins, metabolites, oxidative stress mechanism and subsequently phenotypic changes in HCT 116 which is valuable to understand the intricate biological interactions and mechanism of telomerase in CRC.


Asunto(s)
Berberina , Neoplasias Colorrectales , Telomerasa , Masculino , Humanos , Femenino , Telomerasa/genética , Telomerasa/metabolismo , Interferencia de ARN , Berberina/farmacología , Peróxido de Hidrógeno , ARN/genética , ARN/metabolismo , Células HCT116 , Neoplasias Colorrectales/genética , Telómero/metabolismo
17.
Cancer Chemother Pharmacol ; 93(5): 411-425, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38191768

RESUMEN

BACKGROUND: Artemisinin (ART) and its derivatives are important antimalaria agents and have received increased attention due to their broad biomedical effects, such as anticancer and anti-inflammation activities. Recently, ruthenium-derived complexes have attracted considerable attention as their anticancer potentials were observed in preclinical and clinical studies. METHODS: To explore an innovative approach in colorectal cancer (CRC) management, we synthesized ruthenium-dihydroartemisinin complex (D-Ru), a novel metal-based artemisinin derivative molecule, and investigated its anticancer, anti-inflammation, and adaptive immune regulatory properties. RESULTS: Compared with its parent compound, ART, D-Ru showed stronger antiproliferative effects on the human CRC cell lines HCT-116 and HT-29. The cancer cell inhibition of D-Ru comprised G1 cell cycle arrest via the downregulation of cyclin A and the induction of apoptosis. ART and D-Ru downregulated the expressions of pro-inflammatory cytokines IL-1ß, IL-6, and IL-8. Although ART and D-Ru did not suppress Treg cell differentiation, they significantly inhibited Th1 and Th17 cell differentiation. CONCLUSIONS: Our results demonstrated that D-Ru, a novel ruthenium complexation of ART, remarkably enhanced its parent compound's anticancer action, while the anti-inflammatory potential was not compromised. The molecular mechanisms of action of D-Ru include inhibition of cancer cell growth via cell cycle arrest, induction of apoptosis, and anti-inflammation via regulation of adaptive immunity.


Asunto(s)
Apoptosis , Artemisininas , Neoplasias del Colon , Puntos de Control de la Fase G1 del Ciclo Celular , Humanos , Artemisininas/farmacología , Artemisininas/química , Apoptosis/efectos de los fármacos , Neoplasias del Colon/patología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/inmunología , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Inmunidad Adaptativa/efectos de los fármacos , Rutenio/química , Rutenio/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Células HCT116 , Células HT29 , Animales , Citocinas/metabolismo , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Ratones
18.
Virol J ; 21(1): 7, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178138

RESUMEN

BACKGROUND: Oncolytic viruses are being studied and developed as novel cancer treatments. Using directed evolution technology, structural modification of the viral surface protein increases the specificity of the oncolytic virus for a particular cancer cell. Newcastle disease virus (NDV) does not show specificity for certain types of cancer cells during infection; therefore, it has low cancer cell specificity. Hemagglutinin is an NDV receptor-binding protein on the cell surface that determines host cell tropism. NDV selectivity for specific cancer cells can be increased by artificial amino acid changes in hemagglutinin neuraminidase HN proteins via directed evolution, leading to improved therapeutic effects. METHODS: Sialic acid-binding sites (H domains) of the HN protein mutant library were generated using error-prone PCR. Variants of the H domain protein were screened by enzyme-linked immunosorbent assay using HCT 116 cancer cell surface molecules. The mutant S519G H domain protein showed the highest affinity for the surface protein of HCT 116 cells compared to that of different types of cancer cells. This showed that the S519G mutant H domain protein gene replaced the same part of the original HN protein gene, and S519G mutant recombinant NDV (rNDV) was constructed and recovered. S519G rNDV cancer cell killing effects were tested using the MTT assay with various cancer cell types, and the tumor suppression effect of the S519G mutant rNDV was tested in a xenograft mouse model implanted with cancer cells, including HCT 116 cells. RESULTS: S519G rNDV showed increased specificity and enhanced killing ability of HCT 116 cells among various cancer cells and a stronger suppressive effect on tumor growth than the original recombinant NDV. Directed evolution using an artificial amino acid change in the NDV HN (S519G mutant) protein increased its specificity and oncolytic effect in colorectal cancer without changing its virulence. CONCLUSION: These results provide a new methodology for the use of directed evolution technology for more effective oncolytic virus development.


Asunto(s)
Neoplasias Colorrectales , Virus Oncolíticos , Humanos , Animales , Ratones , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/metabolismo , Proteína HN/genética , Proteína HN/metabolismo , Neuraminidasa/genética , Neuraminidasa/metabolismo , Hemaglutininas , Ácido N-Acetilneuramínico/metabolismo , Células HCT116 , Virus Oncolíticos/genética , Modelos Animales de Enfermedad , Proteínas de la Membrana , Neoplasias Colorrectales/terapia
19.
J Toxicol Environ Health A ; 87(7): 275-293, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38285019

RESUMEN

Tithonia diversifolia is a perennial bushy plant found in South America with significant ethnopharmacological importance as an antimalarial, antidiabetic, antibacterial, and anticancer agent. The aim of the present study was to determine the cytotoxicity of the ethanolic extract from leaves of T. diversifolia (TdE) on human cancer cell lines (HCT-116, SNB-19, NCIH-460 and MCF-7), as well as the mechanism of action involved in cell death and cellular modulation of oxidative stress. The TdE exhibited significant activity with IC50 values ranging from 7.12 to 38.41 µg/ml, with HCT-116 being the most sensitive cell line. Subsequent experiments were conducted with HCT-116 cell line. TdE decreased the number of viable cells, followed by induction of apoptotic events, increase in mitochondrial membrane permeabilization, and enhanced G2/M phase of the cell cycle. Pro-oxidative effects including elevated acidic vesicular organelle formation, lipid peroxidation, and nitric oxide by-products, as well as reduced levels of intracellular glutathione and reactive oxygen species production were also observed following incubation with TdE, which may lead to DNA damage followed by apoptotic cell death. These results demonstrate the potential of TdE ethanolic leaf extraction for biological activity and enhance the importance of continuing to study natural sources of plants for the development of anticancer agents.


Asunto(s)
Antineoplásicos , Tithonia , Humanos , Extractos Vegetales/farmacología , Células HCT116 , Estrés Oxidativo , Apoptosis , Especies Reactivas de Oxígeno/metabolismo , Etanol , Antineoplásicos/farmacología , Hojas de la Planta
20.
DNA Repair (Amst) ; 134: 103627, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219597

RESUMEN

DNA double-strand breaks (DSBs) are harmful to mammalian cells and a few of them can cause cell death. Accumulating DSBs in these cells to analyze their genomic distribution and their potential impact on chromatin structure is difficult. In this study, we used CRISPR to generate Ku80-/- human cells and arrested the cells in G1 phase to accumulate DSBs before conducting END-seq and Nanopore analysis. Our analysis revealed that DNA with high methylation level accumulates DSB hotspots in Ku80-/- human cells. Furthermore, we identified chromosome structural variants (SVs) using Nanopore sequencing and observed a higher number of SVs in Ku80-/- human cells. Based on our findings, we suggest that the high efficiency of Ku80 knockout in human HCT116 cells makes it a promising model for characterizing SVs in the context of 3D chromatin structure and studying the alternative-end joining (Alt-EJ) DSB repair pathway.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Autoantígeno Ku , Animales , Humanos , Cromatina , ADN , Reparación del ADN por Unión de Extremidades , Reparación del ADN/genética , Células HCT116 , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA